Journal of Organometallic Chemistry, 376 (1989) 367–384 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20075

Reaktionen von dreikernigen schwefelverbrückten Carbonyleisen-Clustern mit Alkinen

Th. Fässler und G. Huttner *

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 6900 Heidelberg (B.R.D.)

(Eingegangen den 25. April 1989)

Abstract

The compound $Fe_3(CO)_9(\mu_2-H)(\mu_3-S^tBu)$ (1) reacts with PhCCPh upon photochemical activation under elimination of one CO group to give $Fe_3(CO)_8(\eta^2-\mu_2-HPhCCPh)(\mu_3-S^tBu)$ (2). In contrast, the thermally initiated reaction of $Fe_3(CO)_9(\mu_2-Cl)(\mu_3-S^tBu)$ (3) with HCCPh results in fragmentation, yielding the binuclear products $Fe(CO)_3[Fe(CO)_3 - S - CPh - CH]$ (4) and $Fe_2(CO)_6(\eta^2-\mu_2-H_2CCPh)(\mu_2-S^tBu)$ (5). A simple preparative route to compounds 4 and 5 by the one-pot reaction of $Fe_2(CO)_9$ or $Fe_3(CO)_{12}$ respectively, with 'BuSH and HCCPh is reported.

The preparation, properties and structures of the products 2, 4, 5 and of the substitution derivative of 5, $Fe_2(CO)_4(P(OMe)_3)_2(\eta^2-\mu_2-H_2CCPh)(\mu_2-S^tBu)$ (6) as well as of the byproducts from the one-pot synthesis, $Fe_2(CO)_5(\eta^2-\mu_3-t^BuSCPh=CHCO)(\mu_2-S^tBu)$ (7) and $Fe(CO)_3[S=Fe(CO)_3=CH=CPhC(=O)]$ (8) are discussed. The structures of compounds 2, 4, 5, 6 and 8 are best described as π -complexes of hetero-organometallic ligands.

Zusammenfassung

Die Verbindung Fe₃(CO)₉(μ_2 -H)(μ_3 -S^tBu) (1) setzt sich mit PhCCPh bei photochemischer Aktivierung unter Eliminierung einer CO-Gruppe zu Fe₃(CO)₈(η^2 - μ_2 -HPhCCPh)(μ_3 -S^tBu) (2) um. Dagegen beobachtet man bei der thermischen Umsetzung von Fe₃(CO)₉(μ_2 -Cl)(μ_3 -S^tBu) (3) mit HCCPh Fragmentierung unter Bildung der zweikernigen Produkte Fe(CO)₃[Fe(CO)₃--S--CPh--CH] (4) und Fe₂(CO)₆(η^2 - μ_2 -H₂CCPh)(μ_2 -S^tBu) (5). Eine Eintopfsynthese mit Fe₂(CO)₉ oder Fe₃(CO)₁₂, ^tBuSH und HCCPh wird als einfacher Zugang zu den Verbindungen 4 und 5 beschrieben.

Darstellung, Eigenschaften und Struktur der Produkte 2, 4, 5, und des Substitutionsprodukts von 5, $Fe_2(CO)_4(P(OMe)_3)_2(\eta^2-\mu_2-H_2CCPh)(\mu_2-S^tBu)$ (6) sowie der Nebenprodukte der Eintopfsynthese $Fe_2(CO)_5(\eta^2-\mu_3-^tBuSCPh=CHCO)(\mu_2-$ S^tBu) (7) und Fe(CO)₃[$\overline{S - Fe(CO)_3 - CH - CPhC}$ (=O)] (8) werden diskutiert. Die Strukturgen der Verbindungen 2. 4. 5. 6 und 8 lagen deren Beschreibung als

Strukturen der Verbindungen 2, 4, 5, 6 und 8 legen deren Beschreibung als π -Komplexe heterometallorganischer Liganden nahe.

Einleitung

Die Komplexe A können als $Fe(CO)_3$ -Derivate heterometallorganischer 4π -Liganden aufgefasst werden [1,2]; die vielseitige Chemie der Verbindungen A [2] liess es interessant erscheinen, die Komplexe B als isoelektronische Schwefel-Analoga

von A näher zu untersuchen. Synthesewege für die Darstellung von B waren bekannt [3]. Um eine Chemie von B aufzubauen mussten jedoch ergiebigere und einfachere Methoden zu seiner Darstellung gefunden werden. Wir berichten hier über veschiedene Versuche, Komplexe vom Typ B zu synthetisieren, die letztlich zu einer Eintopfreaktion für deren Darstellung führten.

Versuche zur Darstellung von Komplexen des Typs B aus dreikernigen Vorstufen

Auf der Basis der Chemie der Komplexe A [2] schien es lohnend, den Aufbau von Verbindungen des Typs **B** durch Umsetzung des Clusters Fe₃(CO)₉(μ_2 -H)(μ_3 -S^tBu) (1) [4] mit Acetylenen zu versuchen. Es war bekannt [5], dass die μ_3 -^tBuS-Gruppe als Baustein für die Einführung von Schwefel dienen kann, da unter geeigneten Bedingungen [5] der ^tBu-Rest leicht abgespalten wird.

Die photochemische Umsetzung von 1 mit PhCCPh führt jedoch unter Erhaltung der μ_3 - 'BuS-Gruppe zum Cluster Fe₃(CO)₈(η^2 - μ_2 -HPhCCPh)(μ_3 -S'Bu) (2).

Der dreikernige Bau von 2 lässt sich schon aus der Ähnlichkeit des ν (CO)-IR-Bandenmusters (Tab. 1) von 2 mit dem anderer dreikerniger Carbonyleisenkomplexe wahrscheinlich machen [4]. Die Anwesenheit eines Vinyl-Wasserstoffs dokumentiert sich im ¹H-NMR-Spektrum (Tab. 1): Ein scharfes Signal bei 5.46 ppm liegt nahe an dem Bereich, in dem sonst Vinylwasserstoffresonanzen in zweikernigen Verbindungen mit analoger Vinylkoordination beobachtet werden [6].

Die zweifelsfreie Bestimmung des Baus von 2 erfolgte durch Röntgenstrukturanalyse $[7^*]$. Die quantitativen Aspekte der Struktur von 2 werden weiter unten im

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Verb.	ν (CO)-Streckschwingungen ^a (cm ⁻¹)	¹ H-NMR ^b δ (ppm)	³¹ P-NMR ^{<i>b</i>} δ (ppm)
2	2064m, 2025vs, 2005s, 1999s,	1.76 (s, 9H), 5.46 (S, 1H),	
	1990m, 1975w, 1965w, 1949w	6.71–7.73 (M, 2H)	
		6.98-7.04 (M, 3H),	
		7.21-7.31 (M, 5H)	
4	2078m, 2040vs, 2007sh, 2004s,	7.27–7.34 (M, 5H),	
	1998w	7.61 (S, 1H)	
5	2065w, 2036vs, 1997s, 1985m	1.45 (S, 9H); 2.82,	
		3.60 je (D, J(HH) 6 Hz, 1H);	
		7.22 (M, 5H)	
6	2001s, 1961s, 1929s	1.41 (D, 9H); 2.82, 3.25 je (M, 1H);	174.97, 177.87
		3.49, 3.81 je (D, J(PH) 10 Hz, 9H);	(D, J(PP) 24.8 Hz)
		7.10-7.40 (M, 5H)	
7	2058s, 1996s, 1982m, 1962vw,	1.19, 1.49 (je S, 9H) ^c ;	
	1932w	1.37, 1.76 (je S, 9H) ^c ;	
		7.29 (S, br, 5H);	
		8.25, 8.28 (je S, 1H) ^c	
8	2087s, 2055vs, 2022vs, 2018vs,	7.33–7.44 (M, 3H),	
	2005m, 1713m	7.57-7.68 (M, 2H), 9.11 (S, 1H)	
9	2115m, 2059sh, 2055s, 2032w	7.37-7.61 (M)	
10	2076m, 2052vs, 2021s, 2017sh, 2005w, 1993w	6.77-7.61 (M)	

Spektroskopische Daten der Verbindungen 2 und 4-10

Tabelle 1

^a In n-Pentan, ^b In CDCl₂, ^c Integralverh. 3/4.

Vergleich mit zwei anderen Verbindungen ähnlichen Koordinationsmusters bschrieben.

Eine mögliche Erklärung für die Bildung von 2 aus 1 ist die Annahme, dass zunächst ein Carbonylligand von 1 durch PhCCPh substituiert wird und dann das koordinierte Alkin in die μ_2 -Wasserstoffbrücke von 1 eingeschoben wird. Eine vergleichbare Übertragung des Wasserstoffs vom Metall auf den Liganden wird auch bei Ru- und Os-Clustern beobachtet [9].

Nachdem so 1 als dreikerniges Edukt für die Darstellung zweikerniger Cluster vom Typ **B** nicht geeignet ist, wurde als dreikernige Ausgangssubstanz mit einer bereits teilweise geöffneten Struktur, welche die gewünschte Abspaltung eines Eisenzentrums erleichtern sollte, der Cluster 3 eingesetzt. 3 reagiert bei 40 °C mit HCCPh zum Produkt 4, das in seinem Bau und Bindungsverhältnissen dem Komplextyp **B** entspricht. Zusätzlich entsteht der Komplex 5.

Wie bei anderen Reaktionen von 3 bereits früher gefunden [10], bilden sich auch hier geringe Mengen an 1. Als organisches Produkt wird $\alpha - \omega$ -Diphenyl-1-3-butadien als oxidatives Kopplungsprodukt des eingesetzten Phenylacetylens beobachtet. Der

Nachweis des Dialkins gelingt durch dessen Abtrennung aus dem Reaktionsgemisch durch Sublimation und GC-Analyse im Vergleich mit authentischem Material. Die Bildung des organischen Kopplungsproduktes belegt die oxidierende Wirkung von halogenverbrückten Verbindungen des Typs **3**, die ihren deutlichsten Nachweis darin findet, dass das μ_3 -I-Analoge von **3** mit I⁻ zum Anion [(μ_3 -S^tBu)Fe₃(CO)₉]⁻ reversibel reagiert [11].

Da für die Synthese von 4 im folgenden einfachere Synthesemöglichkeiten beschrieben werden, werden seine Eigenschaften später diskutiert.

Der Komplex 5 ist ein neuer Vertreter einer bereits gut charakterisierten Verbindungsklasse [12]. Der zweikernige Komplex 5 weist eine enge strukturchemische Verwandtschaft zum dreikernigen Produkt 2 auf. Eliminierung einer CO-Gruppe am π -koordinierten Eisen und Aufstockung des ungesättigten zweikernigen Intermediats durch eine Fe(CO)₃-Einheit führt formal von 5 zu einem Derivat von 2. In Umkehrung führt die formale Abspaltung von Fe(CO)₂ aus 2 zu einer Verbindung des Typs 5. Versuche, diese durch den verwandten Verbindungsbau von 2 und 5 angedeuteten Möglichkeiten präparativ zu realisieren, scheiterten. Photochemische Fragmentierung von 2 zu einem Produkt des Typs 5 scheidet als Möglichkeit aus, da 2 selbst photochemisch gebildet wird und da bei seiner Bildung kein Derivat von 5 entsteht. Die thermische Fragmentierung von 2 führt zu dessen unselektiver Zersetzung.

Der Aufbau einer 2 entsprechenden Grundstruktur aus 5 sollte primär die Decarbonylierung des π -koordinierten Eisens voraussetzen. Um die Bedingungen zu prüfen, unter denen eine solche Decarbonylierung von 5 stattfindet, wurde 5 mit TMP (TMP = P(OMe)₃) umgesetzt. Bei 50°C findet Zweifachsubstitution unter Bildung von 6 statt.

Damit ist nachgewiesen, dass bei 50°C die CO-Gruppen von 5 ausreichend labilisiert sind um ausgetauscht zu werden und es sollte daher möglich sein, 5 bei dieser Temperatur mit $Fe_2(CO)_9$ als "Fe(CO)₃"-Quelle zu einem Produkt mit dem Bau von 2 umzusetzen. Die entsprechende Umsetzung bleibt jedoch auch nach mehreren Tagen und ebenso bei höherer Temperatur (80°C) erfolglos: Die Edukte bleiben – abgesehen von der langsamen Umwandlung von $Fe_2(CO)_9$ in $Fe_3(CO)_{12}$ – unverändert erhalten; bei sehr langen Reaktionszeiten und hohen Temperaturen tritt Zersetzung zu undefinierten Feststoffen ein.

In den Verbindungen 2, 5 und 6 liegen drei verwandte Carbonyleisenverbindungen vor, welche eine η^2 - μ_2 -Vinylgruppe als Dreielektronendonor in sehr ähnlicher Weise gebunden enthalten. Identisch ist bei diesen Verbindungen auch die zusätzliche Überbrückung der vinylkoordinierten Carbonyleisenzentren durch eine RS-Gruppe. Die Festkörperstrukturen der Verbindung 2, 5 und 6 sind in Fig. 1–Fig. 3 und Tab. 2–Tab. 4 einander gegenübergestellt.

Die Art der σ - π -Vinylkoordination in den drei Komplexen weist keine Be-

Fig. 1. Struktur von 2 [7].

sonderheiten auf [13]. Ein möglicher Weg zur Analyse der Gerüststruktur ist in Fig. 1-Fig. 3 angedeutet. Die in der Bildebene liegende Kette RS-Fe(CO)₂L-C=C (L = CO 2, 5; L = TMP 6) kann als 4π -Einheit gesehen werden, welche in 5 und 6 als 4π -Ligand an ein weiteres Eisenzentrum side-on koordiniert ist. Diese Betrachtungsweise lässt die Verbindungen 2, 5 und 6 in gleicher Weise zu η^4 -Butadien-Tricarbonyleisenkomplexen [13] in Beziehung setzen wie sie Verbindungen des Typs A oder B als Analoga zu den entsprechenden Cyclobutadienkomplexen [13] erscheinen lässt. In den Bindungsabständen innerhalb des in diesem Modell als 4 π -Ligand betrachteten Gerüstbausteins von 5 und 6 spiegelt sich der erwartete Bindungslängenausgleich in " π -System" marginal wieder (vgl. FeS, FeC, C-C in der viergliedrigen Kette (Tab. 2-Tab. 4)).

Die hier skizzierte Betrachtungsweise ist vor allem für den Vergleich mit Strukturen verwandter Systeme nützlich: Bezüglich der Stellung des als Ligandbaustein betrachteten Tricarbonyleisens findet man in 5 eine in guter Näherung axialständige, d.h. senkrecht zur Ebene des Ligandensystems angeordnete Carbonylgruppe. In 6 ist diese Position durch einen TMP-Liganden besetzt. Die

Abstände (pm)		Winkel (°)		
$\overline{Fe(1)-Fe(2)}$	255.7(2)	Fe(2)-Fe(1)-Fe(3)	62.9(1)	
Fe(1)-Fe(3)	252.5(2)	Fe(1) - Fe(2) - Fe(3)	58.0(1)	
Fe(2)-Fe(3)	265.2(3)	Fe(1) - Fe(3) - Fe(2)	59.1(1)	
Fe(1)-S	211.3(3)	Fe(1)-C(10)-C(9)	63.4(4)	
Fe(2)-S	214.9(3)	Fe(1) - C(9) - C(10)	76.5(5)	
Fe(3)-S	211.4(3)	C(9)-Fe(1)-C(10)	40.2(3)	
S-C(23)	185.3(9)	Fe(1)-C(9)-Fe(2)	76.9(3)	
C(9)-C(10)	140.6(9)	Fe(1)-Fe(2)-C(9)	47.9(2)	
Fe(1)-C(9)	194.9(9)	Fe(2)-Fe(1)-C(9)	55.2(2)	
Fe(1) - C(10)	212.0(8)	C(17)-C(10)-C(9)	124.9(7)	
Fe(2)-C(9)	215.7(7)	Fe(2)-C(9)-C(10)	115.1(5)	
C(9)-C(11)	146(1)	Fe(2)-C(9)-C(11)	118.5(5)	
C(10)-C(17)	145.7(9)	C(11)-C(9)-C(10)	122.4(6)	
C(10)-H(10) ^b	108	Fe(1)-S-Fe(2)	73.7(1)	
Fe-C _{CO}	174-178	Fe(1)-S-Fe(3)	73.4(1)	
		Fe(2)-S-Fe(3)	76.9(1)	
		Fe(2) = S = Fe(3)	/6.9(1)	

Tabelle 2 Abstände und Winkel der Verbindung 2^{a}

^{*a*} In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. ^{*b*} Das Wasserstoffatom wurde mit Fourier-Methoden lokalisiert, seine Parameter wurden nicht verfeinert. Abweichung von der Ebene S-Fe(2)-C(9)-C(10) (pm): S -10.1, Fe(2) 16.6, C(9) -25.4, C(10) 18.9, C(11) -49.2, C(12) 49.0.

gleiche Rotationsstellung des $Fe(CO)_3$ -Bausteins findet man auch in 4 (Fig. 7) und seinen Derivativen [3,14]. In 2 ist durch die zusätzlich aufgesetzte $Fe(CO)_3$ -Kappe diese Stellung nicht mehr ideal, aber immerhin noch angenähert verwirklicht. Anders als in vielen anderen von zwei Dreielektronenliganden verbrückten $Fe_2(CO)_6$ -Derivaten findet man in 2 nicht die für solche Verbindungen sonst typische ekliptische Anordnung der Carbonylliganden [15].

Abstände (pm)		Winkel (°)		
$\overline{Fe(1)}$ - $Fe(2)$	256.7(2)	Fe(1)-S(1)-Fe(2)	69.4(1)	
Fe(1)-S(1)	226.8(2)	Fe(1)-Fe(2)-C(12)	52.6(2)	
Fe(2)-S(1)	224.1(2)	Fe(2)-Fe(1)-C(12)	49.7(1)	
S(1)-C(7)	185.4(6)	Fe(1)-C(12)-Fe(2)	77.7(2)	
Fe(1)-C(11)	215.7(5)	C(11)-Fe(1)-C(12)	38.2(2)	
Fe(1)-C(12)	208.8(5)	Fe(1)-C(12)-C(11)	73.6(3)	
Fe(2)-C(12)	200.4(5)	H-C(11)-H' ^b	108.3	
C(11)-C(12)	139.2(7)	S(1) - Fe(2) - C(12)	85.1(2)	
C(11)-H ^b	102.4	Fc(2)-C(12)-C(11)	123.1(4)	
C(11)-H' ^b	93.8			
Fe-C _{CO}	177.0-180.6			

 Tabelle 3

 Abstände und Winkel der Verbindung 5 ^a

^a In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. ^b Das Wasserstoffatom wurde mit Fourier-Methoden lokalisiert, seine Parameter wurden nicht verfeinert. Abweichungen von der Ebene S(1)-Fe(2)-C(12)-C(11) (pm): Fe(2) 5.0, S(1) - 3.0, C(11) 5.9, C(12) - 7.9, C(13) - 23.6, Fe(1) - 164.5.

Abstände (pm)		Winkel (°)	······································	
$\overline{\text{Fe}(1)-\text{Fe}(2)}$	257.7(2)	Fe(1)-S-Fe(2)	68.8(1)	
Fe(1)-S	229.2(2)	Fe(2)-Fe(1)-C(2)	49.3(2)	
Fe(2)-S	226.7(2)	C(1) - Fe(1) - C(2)	39.3(3)	
S-C(31)	187.2(9)	$H(1)-C(1)-H(2)^{-b}$	110	
Fc(1) - C(1)	212.9(8)	Fe(1)-Fe(2)-C(2)	52.2(2)	
Fe(1) - C(2)	207.8(7)	Fe(1)-C(2)-Fe(2)	78.5(2)	
Fe(2) - C(2)	199.5(7)	Fe(1)-C(2)-C(1)	72.3(4)	
C(1) - C(2)	142(1)			
Fe(1) - P(1)	217.3(2)			
Fe(2) - P(2)	214.3(3)			
$C(1)-H(1)^{b}$	106			
$C(1) - H(2)^{b}$	89			
Fe-C _{co}	175.7-180.8			

Abstände und Winkel der Verbindung 6^a

^a In Klammeren: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. ^b Das Wasserstoffatom wurde mit Fourier-Methoden lokalisiert, seine Parameter wurden nicht verfeinert. Abweichungen von der Ebene S-Fe(2)-C(2)-C(1) (pm): S = 2.9, Fe(2) 4.8, C(2) = 7.4, C(1) 5.5, C(3) = 17.0, Fe(1) = 163.6.

Die im hier skizzierten Modell als side-on koordiniert angesehene $Fe(CO)_3$ -Einheit ist in ihrer Rotationstellung offenbar nicht fixiert. Die Rotationsstellung der $Fe(CO)_2L$ -Gruppen (L = CO 5, L = TMP 6) ist, sicher aufgrund des starken Raumanspruchs der TMP-Gruppe, deutlich verschieden. Wieder anders ist die $Fe(CO)_2$ -Einheit in 2 gedreht; die Stellung dieses $Fe(CO)_2$ -Fragments ist sicher durch seine Bindung an den "kappenbesetzenden" $Fe(CO)_3$ -Baustein fixiert.

Ausgeglichene Bindungslängen im π -System und nahezu freie Rotation der Fe(CO)₃-Gruppe sind für Butadien-Eisencarbonylkomplexe charakteristisch [13]. Das hier entwickelte Bindungsmodell für die Komplexe 2, 5 und 6 erhält damit durch die oben diskutierten Strukturbefunde einen gewissen heuristischen Wert.

Eintopfsynthese von 4

Obwohl die Umsetzung von 3 mit HCCPh einen Zugang zu 4 als einem System vom Typ B eröffnet, ist diese Synthese – wegen der Notwendigkeit 3 über mehrere Stufen darzustellen – präparativ noch nicht befriedigend.

In der Umsetzung von $Fe_3(CO)_{12}$ mit ¹BuSH und PhCCH wurde schliesslich eine bequem durchzuführende Eintopfreaktion für den Aufbau von 4 gefunden [2b].

Neben 4 wird bei dieser Reaktionsführung eine Reihe von Nebenprodukten gebildet. Als bereits aus den Arbeiten von Hieber et al. bekannte Verbindungen entstehen $(\mu_3-S)_2 \operatorname{Fe}_3(\operatorname{CO})_9$ [16] und $(\mu_2-S'\operatorname{Bu})_2\operatorname{Fe}_2(\operatorname{CO})_6$ [16]. Als weitere, auf anderem Weg bequemer zugängliche Komplexe, bilden sich 1 und 5 (s.o. und Lit.

Tabelle 4

Fig. 4. Struktur von 7 [7].

Zit. [4,12]. Als Nebenprodukte, die von ihrer Struktur her interessant sind, entstehen $Fe_2(CO)_5(\eta^2 - \mu_3 - {}^tBuSCPhCHCO)(\mu_2 - S{}^tBu)$ (7) und $Fe(CO)_3[\overline{S - Fe(CO)_3 - Fe(CO)_3}]$ CH--CPhC(=O)) (8).

7 ist wegen seines planaren bicyclischen [3.2.0]-Ringsystems von Interesse (Fig. 4, Tab. 5, [7]). Die für 7 innerhalb der beiden Ringsysteme beobachteten Bindungslängen (Tab. 5) liegen zwischen denen durch nachfolgend angegebenen Valenzstrichformeln angedeuteten Mustern.

Der kurze Fe2-C1-Bindungsabstand (Fig. 4) von 194.1(6) pm ist mit der Formulierung des Komplexes als Carbenderivat (D) im Einklang. Die Bindungslänge C1-O1 (Tab. 5) ist andererseits deutlich kürzer als eine Einfachbindung und belegt innerhalb dieser sehr stark vereinfachten Betrachtungsweise das Gewicht der

Abstände (pm)		Winkel (°)		
$\overline{\text{Fe}(1)}-\overline{\text{Fe}(2)}$	254.2(2)	S(2) - Fe(2) - Fe(1)	151.7(1)	
Fe(1) - S(1)	227.7(3)	C(4)-C(3)-C(2)	126.0(6)	
Fe(1)-O(1)	203.2(4)	C(2)-C(1)-O(1)	121.3(5)	
Fe(2) - S(1)	227.2(2)	C(3)-C(2)-C(1)	119.8(6)	
Fe(2)-C(1)	194.1(6)	O(1)-C(1)-Fe(2)	118.1(4)	
Fe(2) - S(2)	227.1(3)	S(2)-C(3)-C(4)	118.8(4)	
C(1)-O(1)	125.3(7)	$C(3)-C(2)-H(2)^{b}$	129	
S(1)-C(101)	188.1(7)	$H(2)-C(2)-C(1)^{b}$	110	
S(2) - C(3)	181.2(7)	C(2)-C(1)-Fe(2)	120.5(4)	
S(2)-C(201)	188.0(6)			
C(2)-C(3)	131.5(8)			
$C(2) - H(2)^{b}$	110			
C(2) - C(1)	144.3(8)			
C(3) - C(4)	148.1(9)			
Fe-C _{CO}	174.9-182.4			

Abstände und Winkel der Verbindung 7^a

^a In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. ^b Das Wasserstoffatom wurde mit Fourier-Methoden lokalisiert, seine Parameter wurden nicht verfeinert. Abweichung von der Ebene Fe(2)–S(2)–C(3)–C(2)–C(1) (pm): Fe(2) 4.7, S(2) – 3.8, C(3) 1.7, C(2) 3.5, C(1) – 6.3, C(4) 10.4, H(2) 3.6. Abweichung von der Ebene Fe(1)–Fe(2)–C(1)–O(1) (pm): Fe(1) 0.1, Fe(2) – 0.1, C(1) 0.2, O(1) – 0.2.

Valenzstrichformel C. Fünfgliedrige Ringe, die im Aufbau dem Fünfring in 7 entsprechen, sind für solche metallorganischen Baugruppe ML_n bekannt, in denen ML_n ein 15-Elektronen-System ist [17] (z.B $ML_n = Cp(CO)Fe$ [17b].

Fig. 5. Struktur von 8 [7].

Tabelle 5

Abstände (pm)		Winkel (°)		
Fe(1)-Fe(2)	251.0(2)	C(2)-C(1)-S	107.3(3)	
Fe(1)-C(3)	192.6(4)	O(1)-C(1)-S	122.5(3)	
Fe(2) - C(2)	217.0(4)	O(1) - C(1) - C(2)	129.4(4)	
Fe(2) - C(3)	206.8(4)	C(4)-C(2)-C(3)	123.7(4)	
Fe(1)-S	222.1(2)	C(3)-Fe(1)-S	82.7(1)	
Fe(2)-S	227.8(2)	C(3)-Fe(1)-C(12)	96.6(2)	
S -C(1)	181.9(4)	C(2)-C(3)-Fe(1)	124.1(3)	
C(1)-O(1)	119.5(60	C(1)-S-Fe(1)	102.2(2)	
C(1)-C(2)	146.0(6)	Fe(2)-S-Fe(1)	67.8(1)	
C(2) - C(3)	139.6(6)	C(1)-C(2)-C(3)	116.7(3)	
C(2) - C(4)	149.1(5)			
$C(3) - H(3)^{b}$	89			
Fe-C _{CO}	181.6-176.6			

Tabelle 6 Abstände und Winkel der Verbindung 8 ^a

^a In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. ^b Das Wasserstoffatom wurde mit Fourier-Methoden lokalisiert, seine Parameter wurden nicht verfeinert. Abweichung von der Ebene S-Fe(1)-C(3)-C(2) (pm): S 2.1, Fe(1) -3.5, C(3) 5.4, C(2) -4.1, Fe(2) 169.5, C(1) -43.8, O(1) -81.8.

Das Nebenprodukt 8 (Fig. 5, Tab. 6) ist ein Substitutionsderivat des von Weiss et al. charakterisierten Grundkörpers (CH anstelle CPh) [18]. Als weitere zu 8 isoelektronische und damit auch strukturverwandte Verbindung sind "acrylatverbrückte" Komplexe (O anstelle von S) bekannt [13]. Die Bindungsabstände im ebenen, side-on koordinierten π -Teil von 8 C2-C3-Fe1-S sind wie erwartet zwischen Einfach- und Doppelbindungslängen ausgeglichen. Die Carbonylgruppe C1-O1 ist, wie schon die Abstände ausweisen (Tab. 6), an der Konjugation nicht beteiligt. Die Ebene S-C1-O1-C2 schliesst mit der Ebene des konjugierten Systems einen Diederwinkel von 22° ein.

Eine Stütze für die Diskussion des Komplexes 8 auf der Basis eines side-on koordinierten 4π -Systems liefert auch das ¹H-NMR-Spektrum (Tab. 1). Die Resonanz des Methinwasserstoffs im koordinierten π -System von 8 liegt mit 9.11 ppm stark tieffeldverschoben. Dies entspricht der relativ starken Tieffeldverschiebung der Methinwasserstoffe anderer Fe(CO)₃-koordinierter 4π -Systeme. Neben der Lage der Methin-Resonanz entsprechender Verbindungen von Typ A oder B (z.B. 4) (Tab. 1) sind die ¹H-NMR-Spektren von Butadien und Cyclobutadien-Komplexen Belege für diese Aussage [13].

In Bezug auf das Ziel der hier beschriebenen Arbeit sind weniger die strukturell interessanten Nebenprodukte wie 7 und 8 von Bedeutung; wichtiger ist, dass der Aufbau von 4 aus $Fe_3(CO)_{12}$ in präparativ einfacher Weise gelingt. Eine Modifikation dieser Darstellung von 4 ist die Verwendung von $Fe_2(CO)_9$ als Edukt, die

$$Fe_2(CO)_g + ^{t}BuSH + HCCPh = \frac{70 °C}{Toluol} Ph^{-C} = Ph^{-C} + Fe^{-H}$$

Fig. 6. Struktur von 10 [22].

wegen der leichten Verfügbarkeit von $Fe_2(CO)_9$ [19] vorzuziehen ist. Als Nebenprodukt wird auch hierbei 8 gebildet, als schwefelfreies Nebenprodukt entsteht $Fe(CO)_4COCH=CPhCO$ (9) das im Vergleich mit anderen Derivaten dieses Strukturtyps [20] spektroskopisch zweifelsfrei charakterisiert werden konnte (Tab. 1).

Die Übertragung der Synthese von 4 auf nicht terminale Alkine gelang nicht. Beim Versuch $Fe_2(CO)_9$ im Gegenwert von 'BuSH mit Diphenylacetylen entsprechend zur Reaktion zu bringen, konnte kein zu 4 analoges Produkt isoliert werden. Der einzige Komplex, der hierbei gefunden wurde, ist $Fe_2(CO)_6(PhCCPh)_2(CO)$ (10).

Die Identität von 10 wurde ausser durch einen Vergleich spektroskopischer Daten von 10 mit denen analog gebauter Komplexe [21] (Tab. 1) auch durch eine Strukturanalyse [22] erbracht, die allerdings wegen der Fehlordnung eines als Solvat eingeschlossenen Pentanmoleküls nur bis zu einem Übereinstimmungsfaktor R =12% verfeinert wurde. Die Gerüststruktur von 10 (Fig. 6) konnte auf diese Weise dennoch zweifelsfrei festgelegt werden. Sie entspricht der Struktur des solvatfreien 10, die bekannt ist [23].

Fig. 7. Struktur von 4 [2b].

Verbindung 4 (Fig. 7, Tab. 7) [2b], für die nun mehrere Synthesewege zur Verfügung stehen, besitzt eine Struktur, die man für ein side-on koordiniertes Heterometallacyclobutadien [1,3] erwartet. Die Bindungsabstände im Ring sind ausgeglichen, die Substituenten an den ringständigen Kohlenstoffatomen liegen in guter Näherung in der Ebene des viergliedrigen Ringes.

Mit der Synthese von 4 ist ein neuer Zugang zu Komplexen des Typs **B** gegeben. Der einfache Aufbau von 4 aus $Fe_3(CO)_{12}$ oder $Fe_2(CO)_9$ in bequem durchzuführenden Eintopfreaktionen liefert die präparative Basis um die Chemie von Verbindungen des Typs **B** eingehender zu untersuchen [14].

Tabelle 7

Abstände und Winkel der Verbindung 4^a [2b]

Abstände (pm)		Winkel (°)	
Fe(1)-Fe(2)	249.5(2)	S-Fe(1)-C(1)	71.1(1)
Fe(1)-S	225.5(2)	C(2)-S-Fe(1)	81.4(1)
Fe(2)–S	221.6(2)	S-C(2)-C(1)	102.3(3)
Fe(2) - C(1)	207.5(5)	C(2)-C(1)-Fe(1)	104.5(4)
Fe(2) - C(2)	209.1(5)	C(3)-C(2)-C(1)	132.4(5)
Fe(1)-C(1)	193.0(5)	$C(2)-C(1)-H(1)^{b}$	118
Fe(1)-C(2)	263.8(4)	C(1)-Fe(1)-C(11)	96.2(2)
S-C(2)	174.9(5)	S-C(2)-C(3)	124.9(4)
C(1) - C(2)	137.9(6)		
C(2) - C(3)	145.9(6)		
$C(1) - H(1)^{b}$	98		
Fe-C _{CO}	175.2-180.8		

^a In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. ^b Das Wasserstoffatom wurde mit Fourier-Methoden lokalisiert, seine Parameter wurden nicht verfeinert. Abweichungen von der Ebene Fe(1)–C(1)–C(2)–S (pm): Fe(1) – 3.1, S 3.4, C(1) 5.1, H(1) 7.8, C(2) – 5.4, C(3) – 32.8, Fe(2) 180.1.

Experimenteller Teil

Sämtliche Arbeiten wurden under Stickstoff als Schutzgas in frisch absolutierten Lösungsmitteln durchgeführt. Das zur Chromatographie eingesetzte Kieselgel (70–230 mesh) wurde fünf Tage bei 10^{-2} mbar bei Raumtemperatur entgast und anschliessend mit Stickstoff beladen. Die zur Synthese eingesetzten Alkine sind im Handel erhältlich; die Eduktkomplexe werden nach Literaturmethoden hergestellt (1: [4], 3: [12]).

Die photochemischen Reaktionen wurden in einer wassergekühlten Duran-50-Glasapparatur mit einer Quecksilberhochdrucklampe (TQ 150 der Fa. Hanau) durchgeführt. Ultraschallbad der Fa. Bender & Hobein, Laboson 200.

IR-Spektren: Perkin-Elmer 983 G; CaF₂-Küvetten. Massenspektren: Finnigan MAT 312, SS 20 Datensystem, Direkteinlaßsystem Ionisierungsenergie 70 eV, Ionenquellentemperatur 200 °C (m/e (rel. Intensität in %)). NMR-Spektren: Bruker AC 200 (Standard: ¹H: TMS intern; ³¹P: P(OMe)₃, $\delta = 139$ ppm). CHN-Analysen: CHN-Analysator der Fa. Carlo Erba bzw. Heraeus. Gaschromatographische Nachweise wurden an einem Gaschromatographen der Fa. Hewlett Packard 5830A/18850A durchgeführt (Säule: 6 FT 10% UCC w 982 Chromosorb W AW DNCS).

Verwendete Abkürzungen: IR: vs = sehr stark, s = stark, m = mittel, w = schwach, vw = sehr schwach; NMR: S = Singulett, M = Multiplett, D = Dublett.

Analytische Daten zu 2 und 4–10 siehe Tab. 8.

Darstellung von $Fe_3(CO)_8(\eta^2 - \mu_2 - HPhCCPh)(\mu_2 - S^tBu)$ (2)

350 mg (0.7 mmol) **1** werden zusammen mit einem Überschuss an Tolan (900 mg, 5 mmol) während 4 h bei -10 °C bestrahlt. Nach Abziehen des Lösungsmittels wird der braune Rückstand in ca. 10 ml n-Pentan/Toluol (10/1) aufgenommen und auf eine Kieselgelsäule (15 × 1.5 cm) überführt. Nach einem Vorlauf, der wenig Edukt enthält, eluiert man mit n-Pentan/Toluol (1/1) eine olivgrüne Zone, die nach Abziehen des Lösungsmittels 80 mg (15% bezogen auf 1) **2** ergibt.

Massenspektrum von 2: $M^+ - nCO$ (n = 1-8) 632 (4), 604 (6), 576 (4), 548 (4), 520 (21), 492 (8), 464 (12), 436 (2); $M^+ - 7CO - Fe$ 408 (8), Fe_2 (HPhCCPh)(S'Bu)⁺ 381 (74); Fe_2 (HPhCCPh)(S)⁺ 324 (23); Fe(HPhCCPh)(S)⁺ 267 (14); HPhCCPhH⁺ 180 (100); HPhCCPh⁺ 179 (100); PhCCPh⁺ 178 (99); Fe_2S^+ 144 (18); $FeSH^+$ 89 (20); Fe^+ 56 (13); C_3H^+ 41 (18).

Umsetzung von $Fe_2(CO)_9(\mu_2-Cl)(\mu_3-S^tBu)$ (3) mit HCCPh

400 mg (0.7 mmol) **3** werden mit 0.9 ml (8.8 mmol) HCCPh in 200 ml Toluol 6 h bei 40 °C gerührt. Die rote Reaktionslösung wird am Hochvakuum vom Lösungsmittel befreit. Der verbleibende Rückstand wird in wenig n-Pentan gelöst und über Kieselgel (40 cm \times 2.5 cm, -25 °C) chromatographiert. Mit n-Pentan/Toluol (20/1) eluiert man zunächst eine orangefarbene Zone, die 50 mg (17%) 4 enthält, anschliessend eine hellrote Zone, die 75 mg (23%) **5** ergibt. Umkristallisation aus n-Pentan bei -30 °C liefert analysenreines **4** bzw. **5**. Eine dritte, braune Zone, die 30 mg (8%) **1** enthält, eluiert man mit n-Pentan/Toluol (5/1).

Massenspektrum von 4: M^+ 414 (13); $M^+ - n$ CO (n = 1-6) 386 (22), 358 (19), 330 (2), 302 (16), 274 (35), 246 (100); Fe₂S⁺ 144 (35); HCCPh⁺ 102 (2); Fe⁺ 56 (5).

Massenspektrum von 5: M^+ 472 (19); $M^+ - nCO$ (n = 1-6) 444 (21), 416 (25), 388 (77), 360 (23), 332 (78), 304 (100): $M^+ - 6CO - Fe$ 248 (100); $Fe_2SHCCPh^+$ 246 (67); Fe_2SPh^+ 221 (42); Fe_2S^+ 144 (100); Fe^+ 56 (12).

Darstellung von $Fe_2(CO)_4(TMP)_2(\eta^2 - \mu_2 - H_2CCPh)(\mu_2 - S^tBu)$ (6)

300 mg (0.6 mmol) 5 werden mit 0.4 ml (3.2 mmol) TMP versetzt und in 30 ml Toluol 5 h bei 50 °C gerührt. Nach Abziehen des Lösungsmittels und Chromatographie über eine Kieselgelsäule (30×1.5 cm, -30 °C) erhält man mit Toluol/Et₂O (10/1) 410 mg 6 (quantitative Umsetzung).

Massenspektrum von 6: M^+ 664 (2); $M^+ - nCO$ (n = 1-4) 636 (1), 608 (4), 580 (4), 552 (25); $M^+ - 4CO - {}^{1}Bu$ 495 (24); $M^+ - 3CO - TMP$ 456 (2); $M^+ - 4CO - TMP$ 428 (9); Fe₂S(TMP)⁺ 392 (1); Fe₂(TMP)(H₂CCPh)(S'Bu)⁺ 372 (12); Fe₂(H₂CCPh)(S'Bu)⁺ 304 (6); Fe₂S(TMP)⁺ 268 (5); Fe(H₂CCPh)(S'Bu)⁺ 248 (16); Fe₂S(H₂CCPh)⁺ 247 (20); Fe₂S⁺ 144 (5); HS(H₂CCPh)⁺ 136 (16); TMP⁺ 124 (37); PO(OMe)₂⁺ 109 (54); P(OMe)₂⁺ 93 (100); PS⁺ 63 (59); 'Bu⁺ 57 (35); Fe⁺ 56 (11).

Eintopfsynthese von 4

(a) Umsetzung von HS'Bu und HCCPh mit $Fe_3(CO)_{12}$

10.0 g (18 mmol) $Fe_3(CO)_{12}$ werden in 250 ml Toluol eingetragen und mit 2.6 ml (22 mmol) HS^tBu sowie 2.6 ml (25 mmol) HCCPh versetzt. Man rührt 4 h in einem auf 70°C vorgeheizten Ölbad und zieht aus der braunroten Lösung das Lösungsmittel bei 40°C ab. Der Rückstand wird mit 50 ml n-Pentan extrahiert; das braunrote Extrakt lässt man in eine Säule (Kieselgel, 50 × 3 cm, -25°C) einziehen. Dieser Vorgang wird mit 50 ml n-Pentan 3 mal wiederholt, bis das Extrakt grün ist. (Fe₃(CO)₁₂, das auch in fester Form im Kolben zurückbleibt).

Zunächst eluiert man mit n-Pentan/Toluol (10/1) folgende vier Zonen: Fe₃(CO)₉(μ_2 -S)₂ [16], hellrot (wenig); Fe₂(CO)₆(S^tBu)₂ [16], tiefrot (Vergleich der IR- und Massenspektren); Fe(CO)₃[Fe(CO)₃...S...CPh...CH] (4); Fe₂(CO)₆(η^2 - μ_2 -H₂CCPh)(μ_2 -S^tBu) (5) tiefrot, 0.2 g (2%). Mit n-Pentan/Toluol (3/1) wandert ein schmutzig-grünes Gemisch aus Fe₃(CO)₁₂ und Fe₂(CO)₉(μ_2 -H)(μ_3 -S^tBu) (1) 0.15 g (1.5%), n-Pentan/Toluol (5/1 bis 1/1) ergibt zwei braune Zonen, welche Fe₂(CO)₅(η^2 - μ_3 -^tBuSCPh=CHCO)(μ_2 -S^tBu) (7) (< 2%) bzw. Fe(CO)₃-[S...Fe(CO)₃...CH...CPhC(C=O)] (8) 0.3-0.7 g (4-8%) enthalten. Ausbeuten bezogen auf eingesetztes Fe₃(CO)₁₂.

Aus der Zone, welche 4 enthält (ca. 500 ml) wird das Lösungsmittel abgezogen und der Rückstand in maximal 150 ml n-Pentan gelöst. Aus der Lösung fällt bei -80° C in 24 h 4 als orangefarbenes Pulver aus (3.2 g, 39% bez. auf eingesetztes Fe₃(CO)₁₂). Als Verunreinigung kann noch 5, das grosse rote Kristalle bildet, enthalten sein. Analysenreines 4 erhält man durch erneutes Umkristallisieren aus n-Pentan bei -30° C. Dunkelbraune Würfel von 7 und braune Nadeln von 8 erhält man durch Kristallisation aus n-Pentan/Toluol bei -30° C.

Massenspektrum von 7: $M^+ - {}^{t}$ Bu 503 (2); $M^+ - C_4H_8 - nCO$ (n = 1-6) 476 (2), 448 (1), 420 (3), 392 (3), 364 (1), 336 (2); Fe(SH)(S^tBu)(HCCPh)(CO)^+ 308 (1); Fe(SH)(S^tBu)(HCCPh)^+ 280 (10); FeS₂^tBu^+ 177 (6); FeS₂^+ 120 (5); HCCPh^+ 102 (81); Fe⁺ 56 (49); C₃H₅⁺ 41 (100).

Massenspektrum von 8: M^+ 442 (2); $M^+ - nCO$ (n = 1-3, 5-7) 414 (3), 388 (1), 360 (2), 302 (7), 274 (19), 246 (84); Fe₂SC₂H⁺ 169 (17); Fe₂S⁺ 144 (100); HCCPh⁺ 102 (79); Fe⁺ 56 (77).

(b) Umsetzung von $HS^{t}Bu$ und HCCPh mit $Fe_{2}(CO)_{9}$

21.0 g (58 mmol) $Fe_2(CO)_9$ werden in 250 ml Toluol suspendiert. Nach Zugabe von 6.3 ml HCCPh und 6.3 ml HS¹Bu wird das Gemisch in einem auf 70°C vorgeheizten Ölbad unter starkem Rühren 2 h bei dieser Temperatur gehalten. Die intensiv rote Reaktionslösung wird auf 30 ml eingeengt, mit 300 ml n-Pentan versetzt und zur Extraktion der löslichen Reaktionsprodukte in ein Ultraschallbad gehalten. Die überstehende Lösung wird anschliessend über eine mit Kieselgel gefüllte Fritte (10 × 3 cm) filtriert. Der Extraktionsprozess wird mit je einem Gemisch aus 30 ml n-Pentan und 300 ml Toluol solange wiederholt bis die Rotfärbung des Filtrats deutlich schwächer wird (3 bis 5 mal).

Die vereinigten Filtrate werden zur Kristallisation der Produkte bei -80° C aufbewahrt. Nach 1–2 Tagen fällt das gewünschte 4 mikrokristallin an. Daneben kann Fe₂(CO)₆(μ_2 -S^tBu)₂ [16] in Form grosser roter Kristalle, welche durch Auslesen leicht abgetrennt werden können, vorliegen. Das mikrokristalline 4 kann noch bis zu 5% Fe₂(CO)₆(μ_2 -S^tBu)₂ enthalten, welches durch Umkristallisation aus n-Pentan abgetrennt werden kann. Ausbeute an 4: 3.5 g (15%).

Zur Isolierung weiterer Produkte wird die Extraktion mit zunächst n-Pentan/Toluol (1/1) (3×100 ml) fortgesetzt. Das braune Filtrat wird vom Lösungsmittel befreit und nach Kristallisation aus n-Pentan/Toluol (5/1) bei -80° C erhält man 0.2 g (2%) analysenreines 8. Mit n-Pentan/Toluol 1/3 gewinnt man schliesslich nach Kristallisation aus n-Pentan/Toluol ca. 1 g (13%) Fe(CO)₄COCH=CPhCO (9) als fleischfarbene Nadeln. Ausbeuten bezogen auf eingesetztes Fe₂(CO)₉.

Massenspektrum von 9: M^+ 326 (2); $M^+ - n$ CO (n = 1-6) 298 (84), 270 (6), 242 (43), 214 (56), 186 (14), 158 (100); Fe(CO)_2^+ 112 (25); HCCPh^+ 102 (20); Fe(CO)^+ 84 (32); Fe^+ 56 (55).

Tabelle 8

Verbindung	Summenformel	Molmasse	Analyse (Gef. (ber.) (%)		Smp.
			C	H	(°C) ^a
2	C ₂₆ H ₂₀ Fe ₃ O ₈ S	660.04	47.57	2.98	133 ^b
			(47.31)	(3.05)	
4	$C_{14}H_6Fe_2O_6S$	413.95	40.85	1.41	65
			(40.62)	(1.46)	
5	$C_{18}H_{16}Fe_2O_6S$	472.08	45.87	3.18	120
			(45.80)	(3.42)	
6	$C_{22}H_{34}Fe_2O_{10}P_2S$	664.21	39.68	5.06	113
			(39.78)	(5.16)	
7	$\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{Fe}_{2}\mathrm{O}_{6}\mathrm{S}_{2}$	560.25	47.29	4.38	118
			(47.17)	(4.320	
8	$C_{15}H_6Fe_2O_7S$	441.96	40.41	1.29	105
			(40.77)	(1.37)	
9	$C_{14}H_6FeO_6$	326.04	51.09	1.76	88
			(51.57)	(1.86)	
10 ^c	$C_{40}H_{32}Fe_2O_7$	736.38	65.16	3.66	165 ^b
	· – ·		(65.24)	(4.38)	

Charakterisierung der neu synthetisierten Verbindungen

^a Unkorrigiert. ^b Zersetzungspunkt. ^c Enthält ein Mol Pentan.

Umsetzung von $HS^{t}Bu$ und PhCCPh mit $Fe_{2}(CO)_{9}$

3.0 g (8 mmol) Fe₂(CO)₉, welche in 100 ml Toluol suspendiert sind, werden mit 1.2 ml (11 mmol) HS^tBu und 2.4 g (14 mmol) PhCCPh versetzt und in einem auf 75 °C vorgeheiztem Ölbad 1 h gerührt. Die tiefrote Reaktionslösung wird vom Lösungsmittel befreit und der verbleibende Rückstand mit n-Pentan/Toluol (10/1) extrahiert. Mit steigendem Toluol-Anteil (10% bis 50%) erhalt man nacheinander Fe₃(CO)₉(μ_3 -S)₂, Fe₂(CO)₆(μ_2 -S^tBu)₂ [16] und unumgesetztes Tolan. Mit reinem Toluol eluiert man schliesslich tiefrotes Fe₂(CO)₆(PhCCPh)₂(CO) (10) [21]. Durch Umkristallisation aus n-Pentan/Toluol bei -30 °C erhält man 1.0 g (17%) der Verbindung 10 in Form roter Würfel, die noch ein Moläquivalent n-Pentan enthalten. Ausbeuten bezogen auf eingesetztes Fe₂(CO)₉.

Massenspektrum von **10**: $(PhCCPh)_2(CO)^+$ 384 (100); $(PhCCPh)_2^+$ 356 (24); PhCCPh⁺ 178 (78); PhCO⁺ 105 (12); Ph⁺ 77 (24).

Literatur

- 1 H. Lang, L. Zsolnai und G. Huttner, Chem. Ber., 118 (1985) 4426.
- 2 (a) G. Huttner und K. Knoll, Angew. Chem., 99 (1987) 765; Angew. Chem. Int. Ed., 26 (1987) 743;
 (b) K. Knoll, Th. Fässler und G. Huttner, J. Organomet. Chem., 332 (1987) 255.
- 3 G.N. Schrauzer, H.N. Rabinowitz, J. Frank und I. Paul, J. Am. Chem. Soc., 92 (1970) 212; G.N. Schrauzer und H. Kisch, J. Am. Chem. Soc., 95 (1973) 2501.
- 4 J.A. Beer und R.J. Haines, J. Organomet. Chem., 24 (1970) 757. A. Winter, L. Zsolnai und G. Huttner, Chem. Ber., 115 (1982) 1286.
- 5 A. Winter, L. Zsolnai und G. Huttner, J. Organomet. Chem., 234 (1982) 337.
- 6 F. Grevels, D. Schulz und E. Koerner von Gustorf, J. Organomet. Chem., 91 (1975) 341.
- 7 2: $C_{26}H_{20}Fe_2O_8S$, triklin, Raumgruppe (Nr.) $P\overline{I}$ (2), Z = 2, a 918.0(8), b 1194(1), c 1314(1) pm, α 94.73(6), β 110.75(6), γ 95.21(7)°, V 1332·10⁶ pm³, T 243 K, 2 θ -Bereich 2° < 2 θ < 46°, scan-Geschwindigkeit [° min⁻¹] 1.8 < $\dot{\omega}$ < 29.3, 2705 unabhängige Reflexe ($I \ge 2\sigma$), $R_1 = 5.27\%$.

5: $C_{18}H_{16}Fe_2O_6S$, orthorhombisch, Raumgruppe (Nr.) $Pna2_1$ (33), Z = 4. a 995.9(7), b 1198.7(9), c 1657(1) pm, V 1978 · 10⁶ pm³, T 298 K, 2 θ -Bereich 2° < 2 θ < 48°, scan-Geschwindigkeit [° min⁻¹] 2.0 < & < 29.3, 1650 unabhängige Reflexe ($I \ge 2\sigma$), $R_1 = 2.65\%$.

6: $C_{22}H_{34}Fe_2O_{10}P_2S$, orthorhombisch, Raumgruppe (Nr.) $P2_12_12_1$ (19), Z = 4, a 898.6(5), b 1615(2), c 2008(2) pm, V 2914 \cdot 10^6 pm³, T 298 K, 2 θ -Bereich 3° < 2 θ < 60°, scan-Geschwindigkeit [° min⁻¹] 2.5 < ω < 29.3, 2609 unabhängige Reflexe ($I \ge 2\sigma$), $R_1 = 5.22\%$.

7: $C_{22}H_{24}Fe_2O_6S_2$, monoklin, Raumgruppe $P2_1/n$, Z = 4, a 971.0(6), b 2193(1), c 1217.8(9) pm, β 99.43(5)°, V 2558 · 10⁶ pm³, T 298 K, 2θ -Bereich 3° < 2θ < 60°, scan-Geschwindigkeit [° min⁻¹] 2.2 < ω < 29.3, 2006 unabhängige Reflexe ($l \ge 2\sigma$), $R_1 = 5.32\%$.

8: $C_{15}H_6Fe_2O_7S$, triklin, Raumgruppe (Nr.) $P\overline{1}$ (2), Z = 2, a 683.0(7), b 747.3(8), c 1780(1) pm, α 83.99(7), β 86.77(7), γ 63.03(7)°, V 805·10⁶ pm³, T 258 K, 2 θ -Bereich 2° < 2 θ < 46°, scan-Geschwindigkeit [° min⁻¹] 1.6 < ω < 29.3, 2087 unabhängige Reflexe ($I \ge 2\sigma$), $R_1 = 3.69\%$. Die Messung erfolgte auf einem Nicolet (Syntex) P3-Diffraktometer, Mo- K_{α} -Strahlung, Graphitmonochromator, Lösung und Verfeinerung SHELXTL Lit. Zit. 8. Weitere Einzelheiten zur Kristalluntersuchung können beim Fachinformationszentrum Physik Mathematik D-7514 Eggenstein - Leopoldshafen unter Angabe der Hinterlegungsnummer CSD-53827, der Autoren und des Zeitschriftenzitats angefordert werden.

- 8 SHELXTL: G. Sheldrick, SHELXTL, Revision 4, Göttingen, 1984.
- 9 A. Humphries und H. Kaesz, Prog. Inorg. Chem., 25 (1979) 145.
- 10 A. Winter, Dissertation Konstanz 1983.
- 11 A. Winter, L. Zsolnai und G. Huttner, J. Organomet. Chem., 232 (1982) 47.
- 12 R.B. King, P.M. Treichel und F.G.A. Stone, J. Am. Chem. Soc., 83 (1961) 3600.
- 13 G. Wilkinson, F.G.A. Stone und E. Abel (Hrsg.), Comprehensiv Organometallic Chemistry, Bd. IV, Pergamon Press, Oxford 1982.
- 14 Th. Fässler und G. Huttner, J. Organomet. Chem., im Druck.
- 15 D. Thorn und R. Hoffmann, Inorg. Chem., 17 (1978) 126.

- 16 W. Hieber und J. Gruber, Z. Anorg. Allg. Chem., 296 (1958) 91; W. Hieber und W. Beck, Z. Anorg. Allg. Chem., 305 (1960) 265.
- 17 (a) J.L. Davidson und M. Shiralian, J. Chem. Soc., Chem. Commun., (1979) 30; (b) M.T. Ashby und J. Enemark, Organometallics, 6 (1987) 1318.
- 18 K. Hoffmann und E. Weiss, J. Organomet. Chem., 128 (1977) 225.
- 19 G. Brauer, Handbuch der präparativen Anorganischen Chemie, Bd. III, F. Enke-Verlag, Stuttgart, 1978.
- 20 K. Hoffmann und E. Weiss, J. Organomet. Chem., 128 (1977) 399.
- 21 W. Hübel und E. Braye, J. Inorg. Nucl. Chem., 10 (1959) 250.
- 22 10: $C_{35}H_{20}Fe_2O_7 \ge n-C_5H_{12}$, monoklin, Raumgruppe (Nr.) $P2_1/c$ (14), Z = 4, a 1304.9(8), b 1140.9(9), c 2420(1) pm, β 117.39(4)°. Messbedingungen und Analyse wie unter Lit. Zit. 7. Der Kristall enthält pro Formeleinheit ein Molekül n-Pentan, welches fehlgeordnet erscheint ($R_1 = 12.4\%$). Das Ergebnis der Analyse legt den Bau von 10 zweifelsfrei fest, verlässliche Abstands- und Winkelwerte sind dagegen nicht zu erhalten. Die Struktur von 10 wurde nicht weiter verfeinert, da der Bau von solvatfreiem 10 bereits bekannt ist [23].
- 23 J. Huang, L. Shimei, H. Weiyum und W. Manfang, Jiegou Huaxue (J. Struct. Chem.), 3(2) (1984) 105.